Do attitudes cause travel behavior or vice versa?

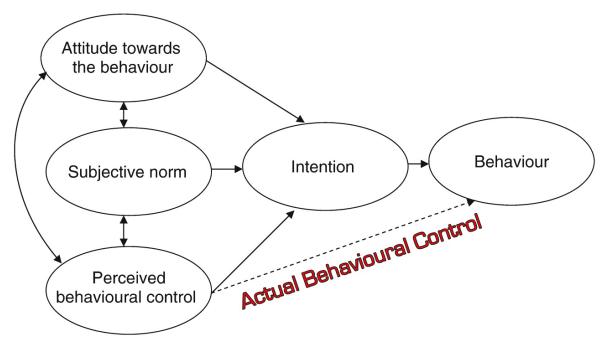
Results from a panel analysis.

Maarten Kroesen (Delft University of Technology) Susan Handy (University of California at Davis) Caspar Chorus (Delft University of Technology)

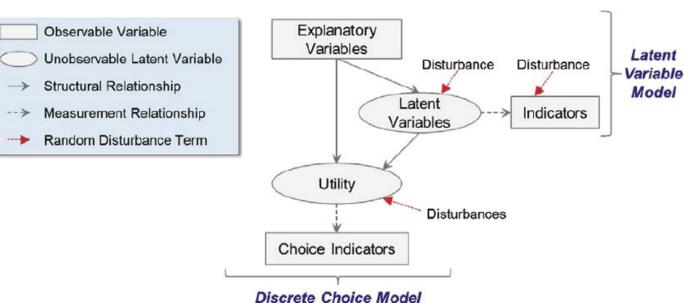
Do attitudes cause travel behavior or vice versa?

An alternative conceptualization of the attitude-behavior relationship in travel behavior modeling

Maarten Kroesen (Delft University of Technology) Susan Handy (University of California at Davis) Caspar Chorus (Delft University of Technology)



Role of attitudes


- Attitudes are relevant in the prediction of travel behavior:
 - In psychological models (e.g. theory of planned behavior)
 - In econometric models (e.g. hybrid choice models)
- Models are often applied in transport domain.

Theory of planned behavior

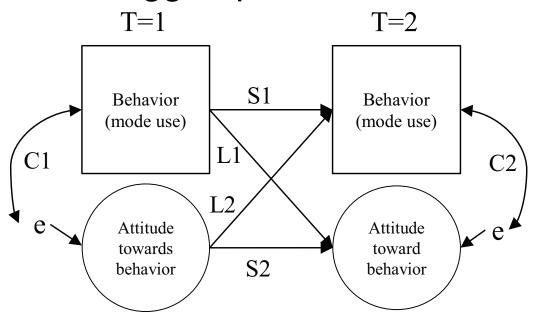
Hybrid choice model

The role of attitudes revisited

- Attitudes precede behavior... but is this true?
- Empirically, effects have been found in both directions
 - Dobson et al. (1978); Tardiff, (1977), Tischer and Phillips (1979)
- Theoretically, such effects may be explained by Festinger's cognitive dissonance theory
 - Confronted with dissonance, people may adjust their behavior or their attitudes

Cognitive dissonance theory

- Dissonance reduction strategies:
 - Alter the behavior ('I quit smoking'),
 - Alter the cognition ('smoking is not that bad for health')
 - Add new cognitions ('If I stop smoking I will gain weight, which is equally unhealthy').
- A priori, unknown which strategy is more likely to occur.
 - An influence from behavior towards attitudes is as likely as an influence from attitudes towards behavior.

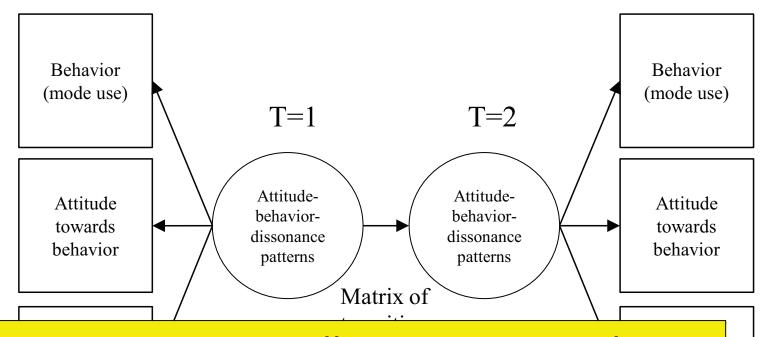

Study objectives:

- 1. To assess the direction of causation between attitudes and behavior *using* panel data
- To develop and test a new framework to study attitude-behavior (in)consistency over time

Conceptual model (1):

Cross-lagged panel model

Latent variable


Observed variable

Does behavior influence attitudes and/or vice versa?

Conceptual model (2):

Latent transition model

Are consonant travellers more inert than dissonant travellers? Do dissonant travellers adjust their attitudes or their behavior?

Methods and data

- A mobility survey was administered twice among members of the LISS panel
 - Longitudinal Internet Studies for the Social sciences panel (<u>www.lissdata.nl</u>)
- 1,376 members completed both waves (2013 and 2014)

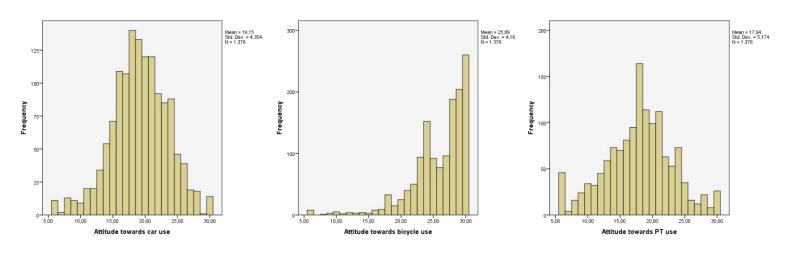
Sample distributions are consistent with population distributions

Variable	Category	
Gender (%)	Female	53
	Male	47
Age	Mean (SD)	52.1 (16.8)
Primary occupation (%)	Employed or self-employed	50
	Student	7
	Housekeeping	9
	Pensioner	23
	Other	11
Level of education (%)	Low	33
	Intermediate	35
	High	32
Personal net monthly income in Euros (%)	No income	9
	1-1000 Euro	24
	1001-2000 Euro	42
	2001-3000 Euro	19
	Over 3001 Euro	6

Measures: Travel behavior

- Distance travelled by car, PT and bicycle in a 'regular week'
- Recoded to 5-point ordinal scale

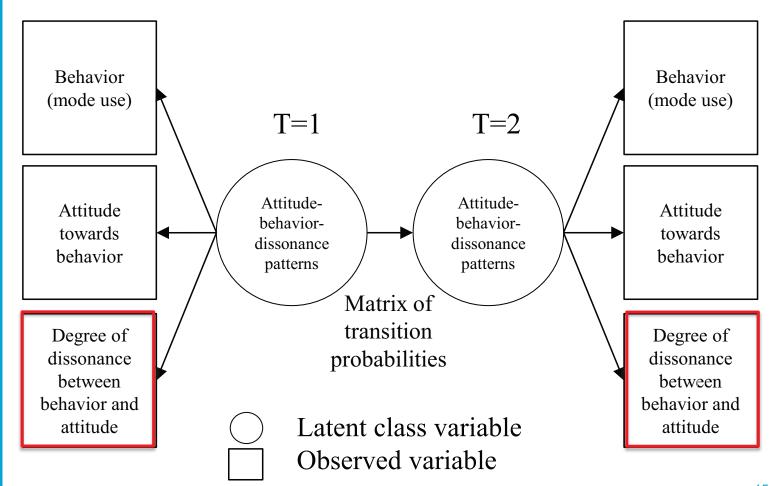
	Ca	r	Bicy	cle	Public transport		
	0	21	0	19	0	77	
Kilometres	1-20	16	1-10	29	1-20	9	
in a regular week – wave	21-50	15	11-20	15	21-50	4	
1 (%)	51-200	27	21-40	16	51-200	6	
	>200	21	>40	21	>200	4	



Measures: Attitude towards behavior

- Six items measured on 5-point scales:
 - [Driving by car / Cycling / Using PT] is easy
 - [Driving by car / Cycling / Using PT] is relaxing
 - [Driving by car / Cycling / Using PT] is fun
 - [Driving by car / Cycling / Using PT] is healthy
 - [Driving by car / Cycling / Using PT] is safe
 - [Driving by car / Cycling / Using PT] is environmental friendly
- For each mode, the items converged on a single factor
- Composite measures were created and recoded to 5-point ordinal scales

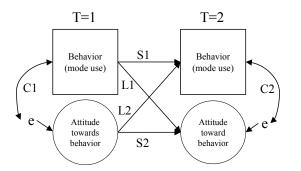
Measures: Attitude towards behavior



	Са	r	Bicy	cle	Public transport			
		3		1		9		
Attitude	-	15	-	1	-	20		
towards mode use – wave 1	0	44	0	7	0	40		
(%)	+	31	+	31	+	24		
	++	7	++	60	++	6		

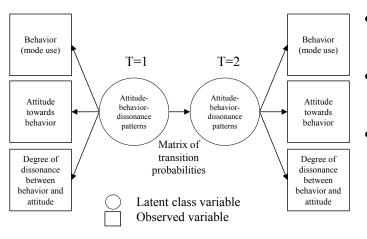
Conceptual model (2):

Latent transition model


Measures: Degree of dissonance

 The absolute differences between the 5point behavioural and the 5-point attitudinal scale

	Ca	r	Bicy	cle	Public transport			
	0	3	0	1	0	9		
Degree of	1	15	1	1	1	20		
dissonance –	2	44	2	7	2	40		
wave 1 (%)	3	31	3	31	3	24		
	4	7	4	60	4	6		

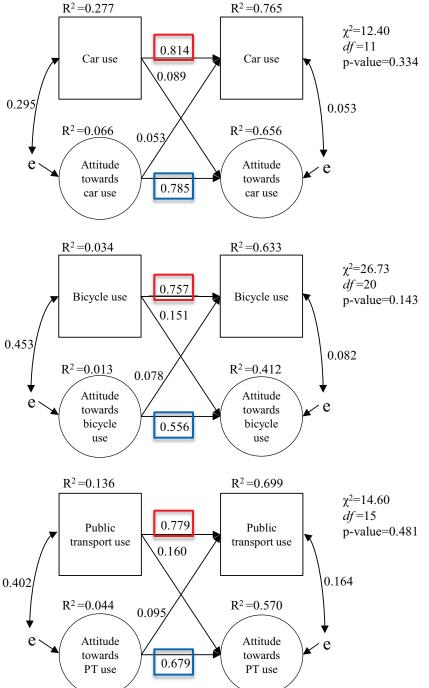


Model estimation

- Latent variable
- Observed variable
- e Error term
- C Correlation
- S Stability relationship
- L (cross-)lagged relationship

- 3 Structural Equation Models (one for each mode)
- Attitudes specified as LV's
- Mplus 7.2

- 3 latent transition models (one for each mode)
- 4 classes optimal for car and bicycle, 5 for PT
- Latent Gold 5.0

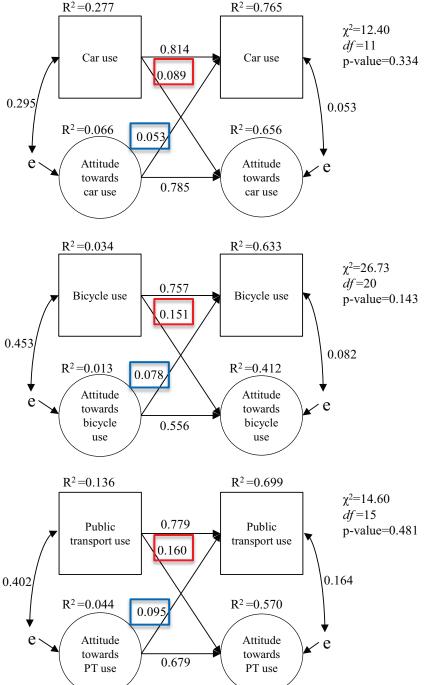


Results

Standardized coefficients

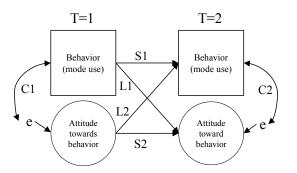
Across all three modes:

- Behavior is relatively more stable
- Attitudes are relatively less stable

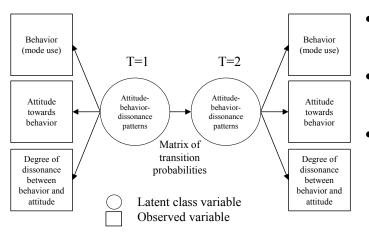


Results

Standardized coefficients


Across all three modes:

- Effects of behavior on attitudes...
- ...stronger than vice versa



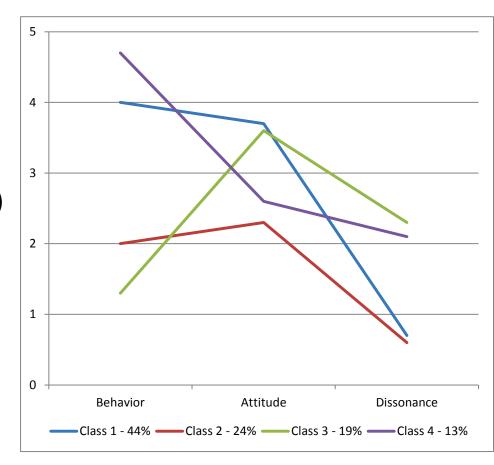
Model estimation

- Latent variable
- Observed variable
- e Error term
- C Correlation
- S Stability relationship
- L (cross-)lagged relationship

- 3 Structural Equation Models (one for each mode)
- Attitudes specified as LV's
- Mplus 7.2

- 3 latent transition models (one for each mode)
- 4 classes optimal for car and bicycle, 5 for PT
- Latent Gold 5.0

Car


4 classes:

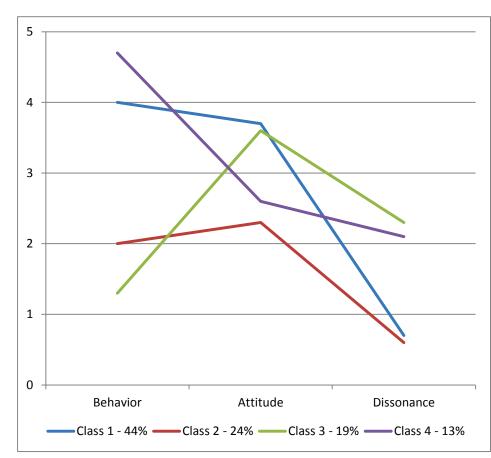
2 consonant (1 & 2)

2 dissonant (3 & 4)

Transition probability matrix

Consonant more inert than dissonant travellers

		Class membership probability at t=1										
		1	2	3	4							
Class	1	0.77	0.07	0.11	0.42							
membership	2	0.04	0.69	0.27	0.09							
probability at	3	0.05	0.21	0.60	0.01							
t=2	4	0.14	0.03	0.01	0.47							


Car

4 classes:

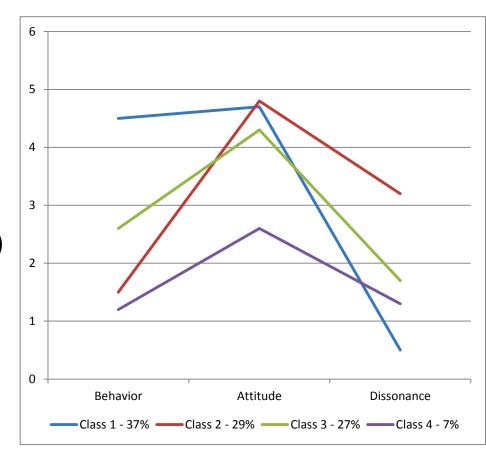
2 consonant (1 & 2)

2 dissonant (3 & 4)

Transition probability matrix dissonant travellers adjust their attitudes

			Class me	mbership	probabili	ty at t=1
			1	2	3	4
Class	Class	1	0.77	0.07	0.11	0.42
)	membership	2	0.04	2	0.27	0.09
	probability at t=2	3	0.05	0.21	0.60	0.01
		4	0.14	0.03	0.01	0.47

Bicycle


4 classes:

1 consonant (1)

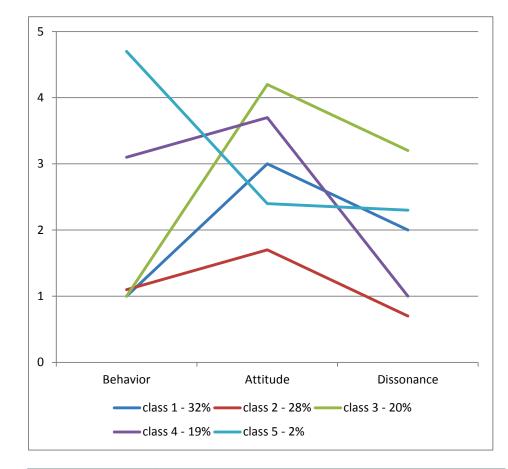
3 dissonant (2, 3 & 4)

Transition probability matrix

Consonant more inert than dissonant travellers

		Class me	mbership	probabili	ty at t=1
+		1	2	3	4
Class	1	0.75	0.10	0.24	0.00
membership	2	0.06	0.57	0.26	0.26
probability at	3	0.18	0.25	0.48	0.13
t=2	4	0.01	0.08	0.02	0.61

Bicycle

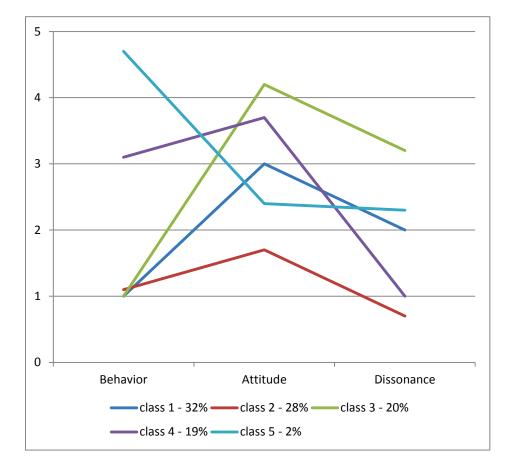

4 classes:

2 consonant (2 & 4)

3 dissonant (1, 3 & 5)

Transition probability matrix

Consonant more inert than dissonant travellers



		Class membership probability at t=1											
		1	2	3	4	5							
Class	1	0.49	0.28	0.35	0.12	0.08							
membershi	2	0.23	0.62	0.06	0.06	0.14							
p	3	0.20	0.04	0.43	0.12	0.00							
probability	4	0.07	0.04	0.15	0.69	0.50							
at t=2	5	0.00	0.01	0.00	0.02	0.28							

Bicycle

4 classes: 2 consonant (2 & 4) 3 dissonant (1, 3 & 5)

Transition probability matrix Students

		Class membership probability at t=1											
		1	2	3	4	5							
Class	1	0.49	0.28	0.35	0.12	0.08							
membershi	2	0.23	0.62	0.06	0.06	0.14							
p	3	0.20	0.04	0.43	0.12	0.00							
probability	4	0.07	0.04	0.15	0	0.50							
at t=2	5	0.00	0.01	0.00	0.02	0.28							

			Car			Bicycle					Public transport					
		1	2	3	4	1	2	3	4		1	2	3	4	5	
Gender																
Female		0.40	0.72	0.70	0.34	0.50	0.56	0.53	0.59		0.55	0.52	0.52	0.50	0.68	
Male		0.60	0.28	0.30	0.66	0.50	0.44	0.47	0.41		0.45	0.48	0.48	0.50	0.32	
Age																
15 - 34		0.15	0.16	0.30	0.15	0.17	0.17	0.22	0.16		0.15	0.18	0.10	0.27	0.74	
35 - 54		0.39	0.28	0.20	0.37	0.29	0.37	0.33	0.28		0.35	0.39	0.31	0.21	0.17	
55 or older		0.46	0.57	0.50	0.48	0.54	0.46	0.45	0.56		0.50	0.42	0.60	0.52	0.08	
Primary occupation	n															
(self-) Employed		0.61	0.34	0.32	0.71	0.44	0.59	0.51	0.41		0.53	0.56	0.50	0.39	0.34	
Student		0.03	0.09	0.19	0.01	0.10	0.04	0.08	0.03		0.04	0.03	0.03	0.16	0.56	
Housekeeping		0.04	0.17	0.13	0.02	0.07	0.08	0.10	0.14		0.12	0.09	0.07	0.05	0.04	
Pensioner		0.24	0.25	0.23	0.21	0.29	0.19	0.21	0.23		0.23	0.17	0.30	0.28	0.02	
Other		0.08	0.16	0.14	0.05	0.10	0.10	0.10	0.19		0.09	0.14	0.10	0.11	0.06	
Level of education	l															
Low		0.29	0.34	0.50	0.22	0.33	0.35	0.30	0.44		0.34	0.36	0.36	0.27	0.23	
Intermediate		0.37	0.36	0.30	0.31	0.34	0.34	0.34	0.39		0.34	0.39	0.31	0.33	0.40	
High		0.34	0.30	0.20	0.47	0.33	0.31	0.36	0.17		0.32	0.26	0.32	0.40	0.37	
Income																
No income		0.04	0.14	0.21	0.03	0.11	0.07	0.11	0.09		0.10	0.09	0.05	0.12	0.26	
1-2000 Euro		0.64	0.74	0.69	0.55	0.66	0.70	0.62	0.72		0.67	0.67	0.72	0.62	0.52	
Over 2001 Euro		0.32	0.12	0.10	0.42	0.23	0.24	0.28	0.19		0.23	0.24	0.24	0.26	0.22	

Conclusions & implications

- Travel attitudes and behaviors mutually influence each other over time.
- Contrary to assumptions in most models, behavior influences attitudes more than vice versa.
 - Present models (strongly) overestimate the effects of attitudes (because they do not account for reverse causation)
 - Changing people's attitudes may not be effective as typically assumed
- Dissonant travelers are more likely to switch to another attitude-behavior pattern.
- Dissonant travelers are more likely to adjust their attitudes than their behavior.
 - E.g. if policy makers do not act on dissonance with respect to public transit, people will generally adjust their attitudes towards this mode downwards.

Future work

- Combine approach with mobility biographies approach (life events)
- Qualitative research
- More waves

Questions

