

ESTIMATING THE EFFECTS OF LIFE-EVENTS AND CHANGES IN MOBILITY TOOL OWNERSHIP ON MODE CHOICE BEHAVIOUR

Roel Faber^{a,b} Sander van Cranenburgh^b Maarten Kroesen^b Eric Molin^b

a: KiM Netherlands Institute for Transport Policy Research, Bezuidenhoutseweg 20, The Hague b: Delft University of Technology, Faculty of Technology, Policy, and Management, Jaffalaan 5, Delft

THE BACKGROUND: MODE CHOICE ANALYSIS

Mode Choice analysis as cornerstone of travel behaviour research

Since the 1970's based on RUM discrete choice theory (McFadden 1973;Train 2009)

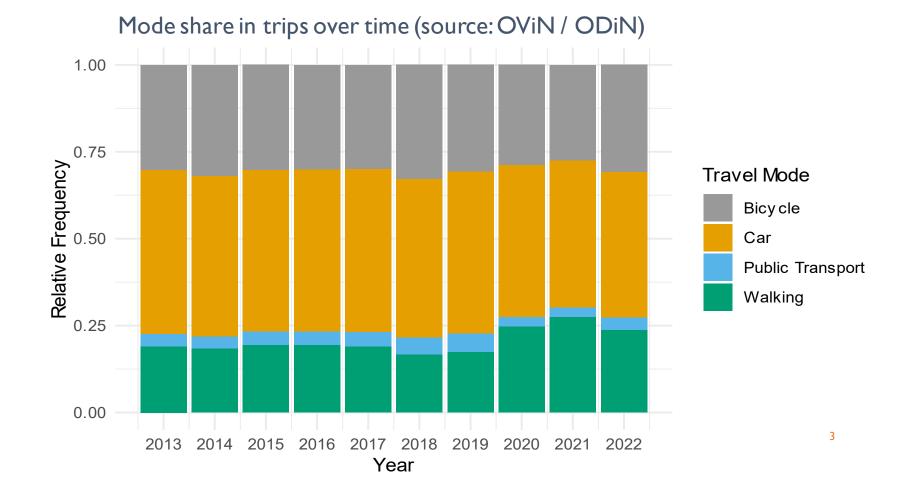
Mode choice based on *attributes*: travel time, travel cost, etc.

Estimate *preferences* of people with regards to these attributes

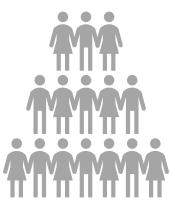
Typically employed in a static fashion No changes in preferences over time

STABILITY OF PREFERENCES: AGGREGATED

 On an aggregated level, mode choice behaviour is very stable over time



STABILITY OF PREFERENCES: INDIVIDUAL



This aggregated stability might hide *indidual*-level changes over time

Knowing when and why these changes occur can help shift aggregated behaviour

BEHAVIOUR IS NOT ALWAYS STABLE

- Previous studies have looked at effects of:
 - Life-events
 - Changes in mobility tool ownership (cars, bicycles, public transport subscriptions)
- However, they have typically done so using a clustering approach

Thus, studying mode use, rather than mode choice

Unable to show how preferences for attributes change

Unable to distinguish trip generation from mode choice

Determine the *stability* of mode choice behaviour and attributepreferences over time

Find when this stability is decreased

Effects of life-events Changes in mobility-tool ownership

RESEARCH OBJECTIVE

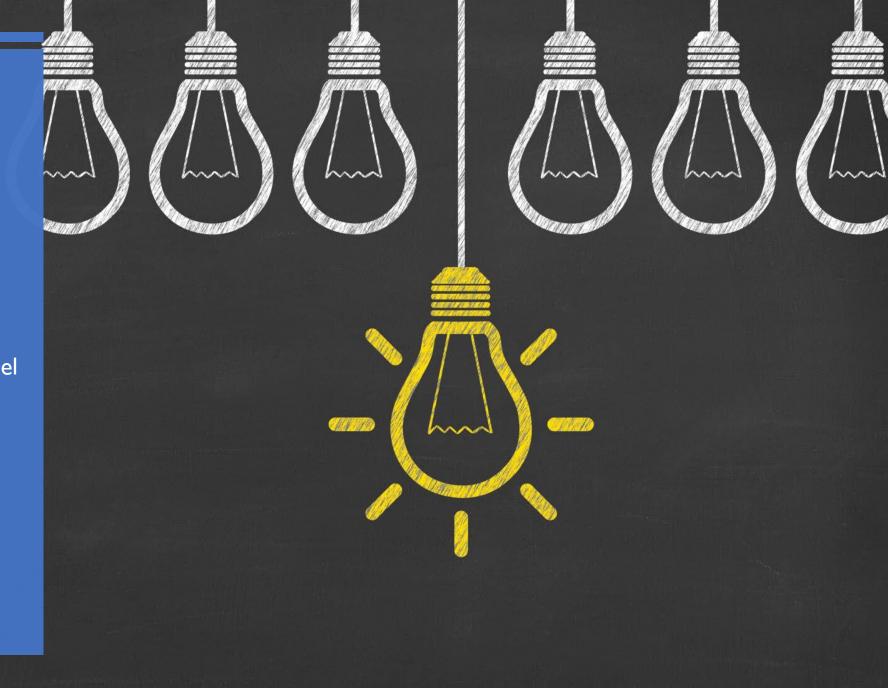
RESEARCH METHODS

hnn

MARIAN

Latent Transition Choice ModelResearch Data (MPN)

477 8.87 898 1 4 5 47 65 1 1 48

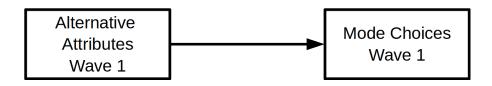


RESEARCH METHOD

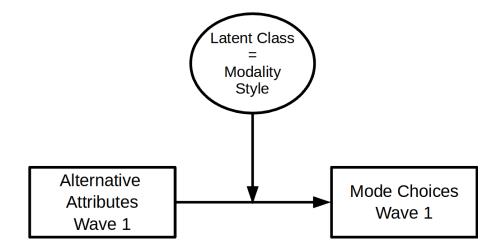
- Latent (Class) Transition Choice Model
 Sometimes also known as 'Markov choice model'
- General idea:
 - Separate groups (latent classes)
 - Keep the within-group parameters stable over time
 - Let respondents 'transition' between the groups

CONCEPTUAL MODEL (I): DISCRETE CHOICE BUILDING BLOCK

- Let mode choice be determined by alternative attributes
- In principle, flexible to specific implementation
 - RUM, RRM
 - nested, mixed, etc.



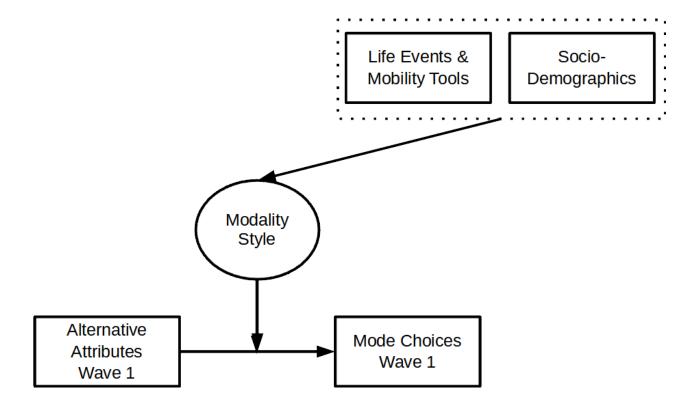
CONCEPTUAL MODEL (2): LATENT CLASSES



- Specify a latent class choice model
- Each latent class has different preferences (~= parameters)
- Interpret the latent classes as modality styles Underlying preferences to certain travel modes

Examples: 'Car-lover' 'Bicycle-oriented'

CONCEPTUAL MODEL (3): MEMBERSHIP FUNCTION



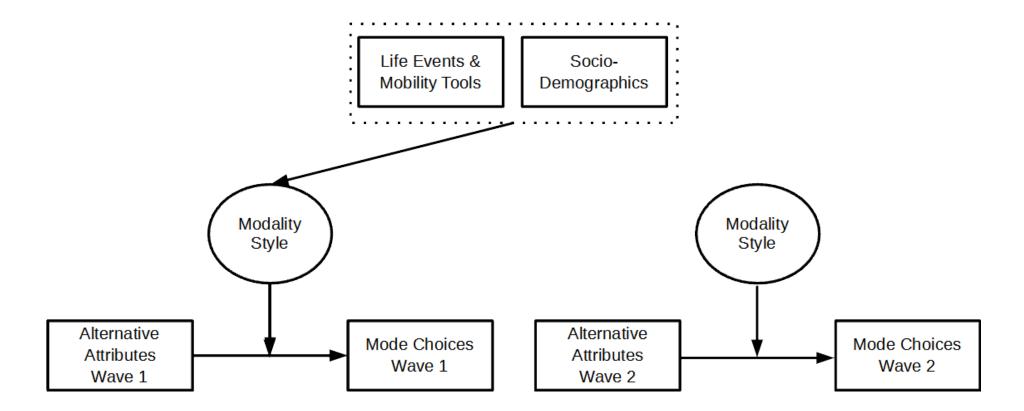
- Let socio-demographics affect class membership
 - 'Younger people are more likely to be in multimodal class'
- Also add effects of life-events and mobility tool ownership 'People who change jobs use the car more often'

'People who own e-bikes are more likely to use the bicycle'

 Note: time is not modeled yet! Direction of effects? Changes in tool-ownership?

CONCEPTUAL MODEL (4):TOWARDS A TRANSITION MODEL

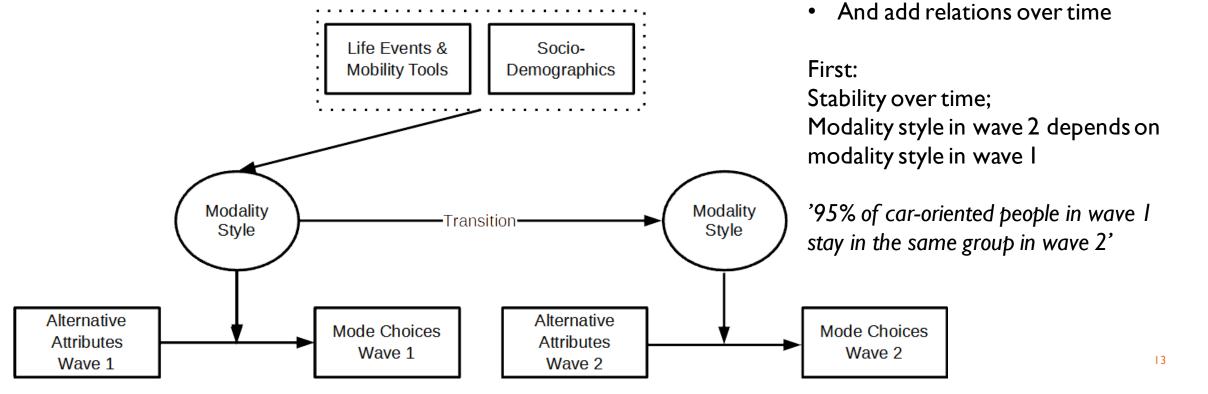
• So, let's add another wave!



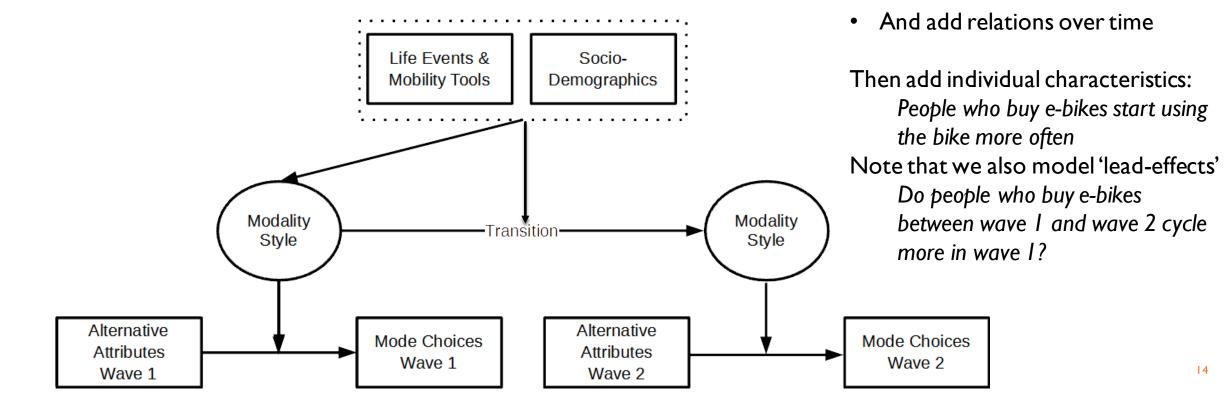
12

CONCEPTUAL MODEL (4):TOWARDS A TRANSITION MODEL

So, let's add another wave!



CONCEPTUAL MODEL (5):WHO?



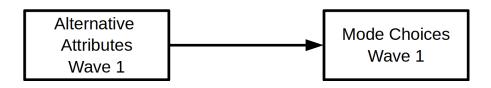
So, let's add another wave!

•

OUR CHOICE MODEL

Quick word on the specific choice model used in this study

- Alternative specific travel times (Google Directions API) + travel distance for active modes
- Correction factor for trips made with multiple people
- Nested model, with one sub-nest containing public transport, bicycle, walking



RESEARCH DATA (I)

- Need panel data, with alternative-specific information, life-events, and vehicle ownership
 MPN!
- Revealed preference data (real trips!)
- Use a selection of all trips
 - Made with 4 main travel modes: car, public transport, bicycle, and walking
 - Departing from residence
 - <200 km distance</p>
 - Different origin and destination

RESEARCH DATA (2)

Include respondents who participatedOversample life-events and changes in
mobility tool ownership

Final sample consists of ~4000 unique respondents and ~20.000 trips.

RESULTS

- Identify latent classes as modality styles
- Modality styles are inert
- Life-events and changes in mobility tool ownership break inertia

Estimated conditional mode choice probabilities for reference trips Class = 2Class = 1 $1.0 \neg$ 0.8 **Estimated Probability** Mode 0.6 Car Public Transport 0.4 -Bicycle Walking 0.2 0.0 15 20 10 15 20 10 0 5 5 0 Distance Distance

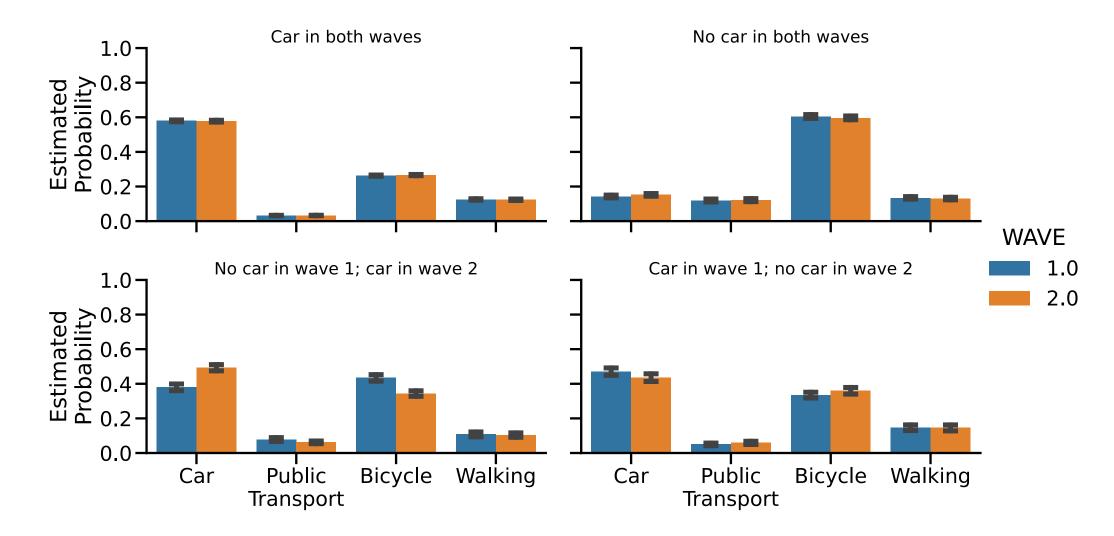
RESULTS (I): IDENTIFY MODALITY STYLES

RESULTS (2): INERTIA OF MODALITY STYLES

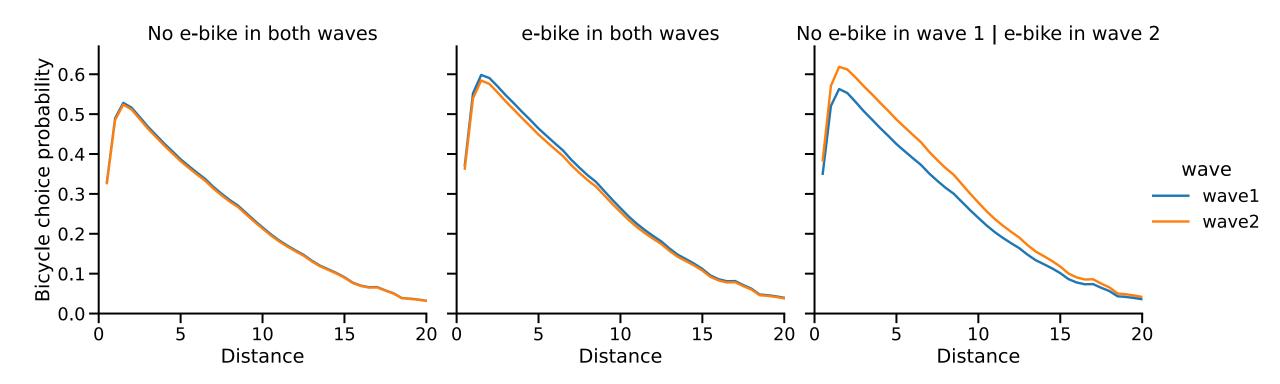
- Both modality styles are in general very stable
- Stability is decreased in presence of life-events / changes in mobility tool ownership

With life-events / changes in **Average transition matrix** mobility tool ownership Wave 2 Wave 2 Class I: Class 2: Class I: Class 2: Multi-modal Car-oriented Multi-modal Car-oriented 0.116 Class I: 0.924 0.0759 Class I: 0.884 **Car-oriented** Car-oriented Wave 1 Class 2: 0.0821 0.918 Class 2: 0.112 0.888 Multi-modal Multi-modal

RESULTS (3): EFFECTS OF CAR OWNERSHIP



RESULTS (4): EFFECTS OF E-BIKE OWNERSHIP



CONCLUSIONS

CONCLUSION (I): BENEFITS OF THE MODEL

- Latent Transition Choice Model
 Provides a better fit to the data
 Allows for estimation of effects of lifeevents on choice probabilities
 - Changes in preferences with regards to attributes

Explicitly incorporates time

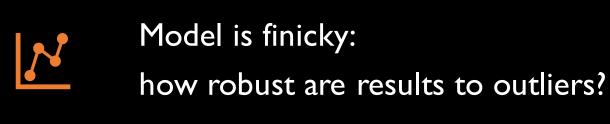
CONCLUSION (2): SUBSTANTIVE CONCLUSIONS

- Owning or not owning a car is important determinant of car use Asymmetry: gaining a car has larger effect than losing one Lead-effects: people who use a car more often will then buy a car Higher sensitivity to travel time (and travel distance for active modes)
- E-bike ownership increases bicycle use
 Reductions in public transport and car use
 Lower sensitivity to travel time and travel distance

CONCLUSION (3): SUBSTANTIVE CONCLUSIONS

- Small / no effects of the life-events we investigated
 - Contradicts earlier mode use studies
 - Perhaps effects are mostly related to trip generation / travel patterns?
 - Or effects run through mobility tool ownership?
 - We do find significant lead-effects

LIMITATIONS



Still difficult to fully establish direction of causality

Relatively small sample size with changes in life-events

NEXT STEPS

Add other mobility tools:

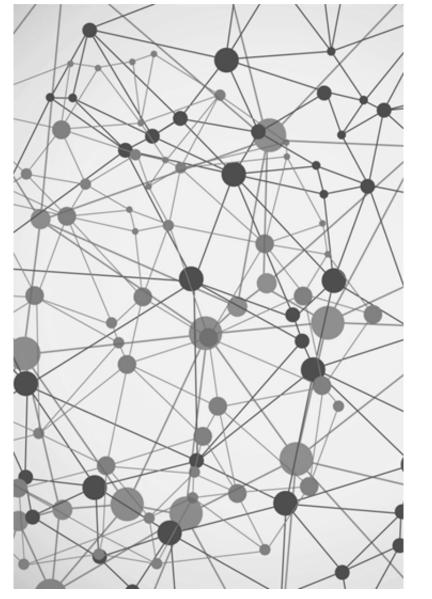
Household car ownership Public transport cards and subscriptions (OV-kaart) Access to car (unlimited, in coordination, etc.) Change to electric car

Compare findings with cluster model and contrast results

Modeling changes in mobility tool ownership in their own right

A WORD ON THE MPN

- Unique dataset, not just for the Netherlands but worldwide
- Ability to estimate choice models using revealed preference data Enough information on individuals to work on choice set formation Alternative specific travel times
- Panel data enables estimation of richer models, providing relevant information
 Direction of effects, lead-effects, effects of changes in independent variables, etc.
- Still 'normal' downsides of revealed preference data (correlations, extrapolation)
 Life-events / changes in mobility tools are rare events and sample size is just about OK



ESTIMATING THE EFFECTS OF LIFE-EVENTS AND CHANGES IN MOBILITY TOOL OWNERSHIP ON MODE CHOICE BEHAVIOUR

Roel Faber^{a,b} Sander van Cranenburgh^b Maarten Kroesen^b Eric Molin^b

a: KiM Netherlands Institute for Transport Policy Research, Bezuidenhoutseweg 20, The Hague b: Delft University of Technology, Faculty of Technology, Policy, and Management, Jaffalaan 5, Delft

	Model I	Model 2	Model 3	Model 4	
	latent class model	latent class model. change size across waves	latent transition model. No covariates	latent transition model. With covariates	
	Within-sample model fit				
Est. parameters	20	21	22	55	
LL _β	-17 023	-17 023	-16 946	-16 602	
Mean LL_{β} per person	-0.603	-0.603	-0.600	-0.586	
ρ^2 eq. shares	0.518	0.518	0.520	0.530	
LL_{β} diff	-	0	77	344	
Out of sample validation					
LL_{β} per obs. In sample	-0.606	-0.606	-0.605	-0.592	
LL _β per obs. Out of sample	-0.604	-0.604	-0.600	-0.590	
% Diff.	-0.59%	-0.59%	-0.71%	-0.42%	

RESULTS (EXTRA): DOES LCTCM FIT BETTER?