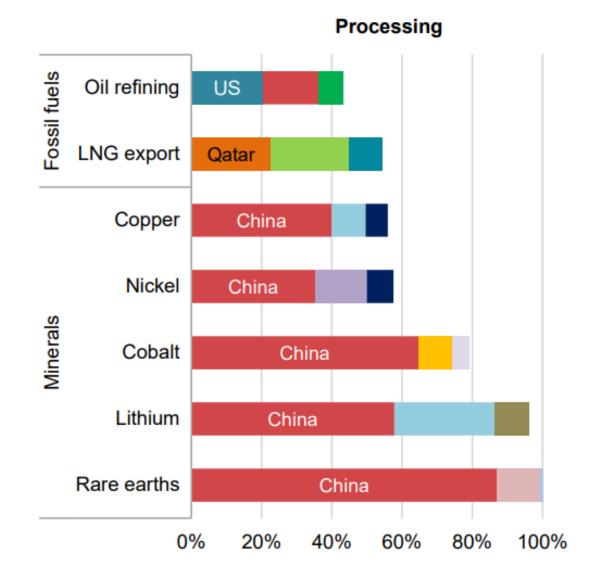
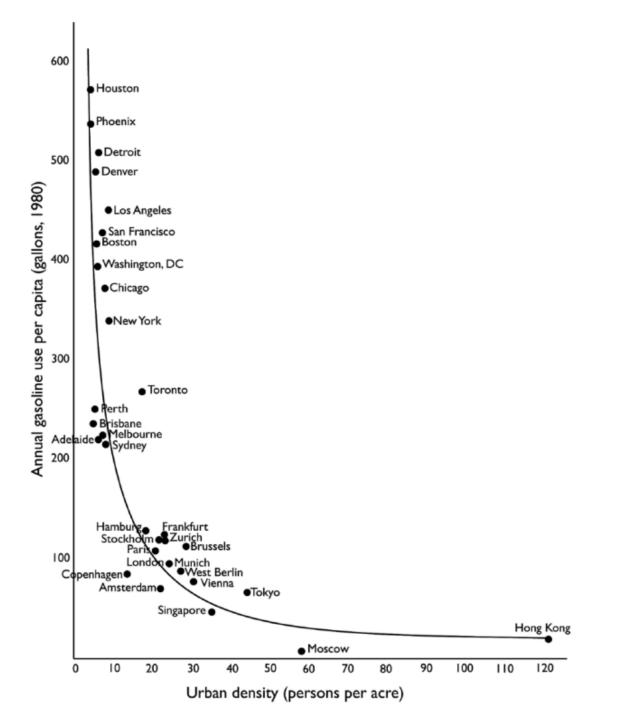
The influence of the built environment on real world car efficiency

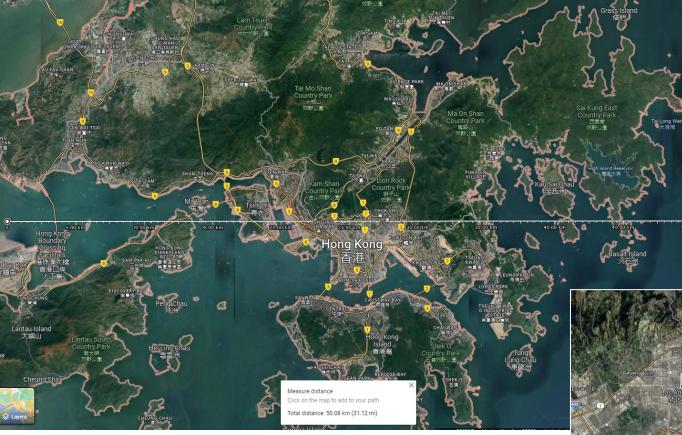
Presentation by Chris Djie ten Dam, PhD at Utrecht University

Co-authors: Francisco Bahamonde-Birke Dick Ettema Gert Jan Kramer Vinzenz Koning

Why this topic?


***** We need to reduce gasoline consumption


- Climate change
- Energy security
- EVs also threaten energy security


Heavy EVs consume a lot of electricity

 \succ At the wrong time

Important to also reduce car dependence and minimize car weights and associated energy consumption

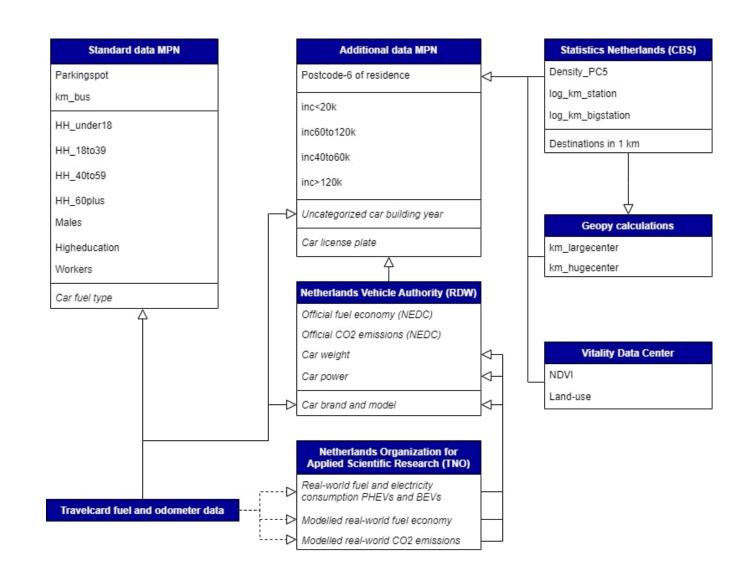
The research gap

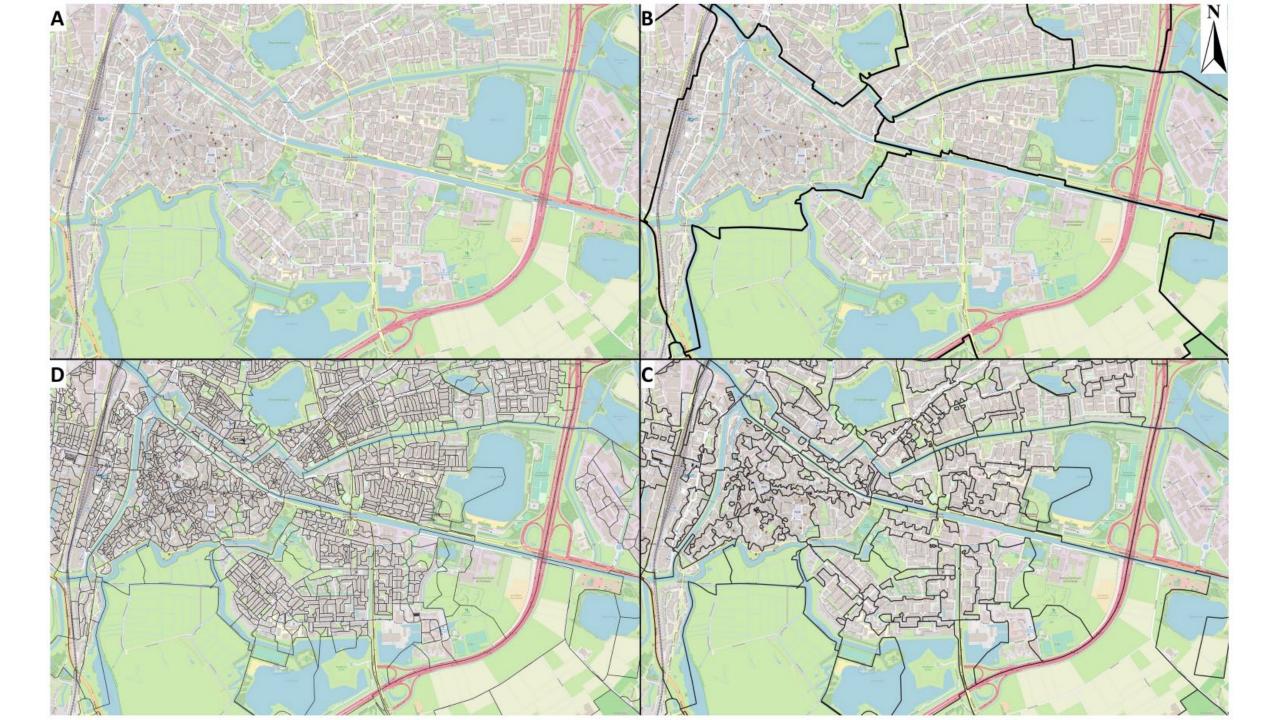
* Most studies analyze vehicle kilometers traveled

- Other studies analyze ownership cars vs SUVs, vans, and trucks
 - Most omit compact (efficient) vehicles
 - They do not actually compute energy use

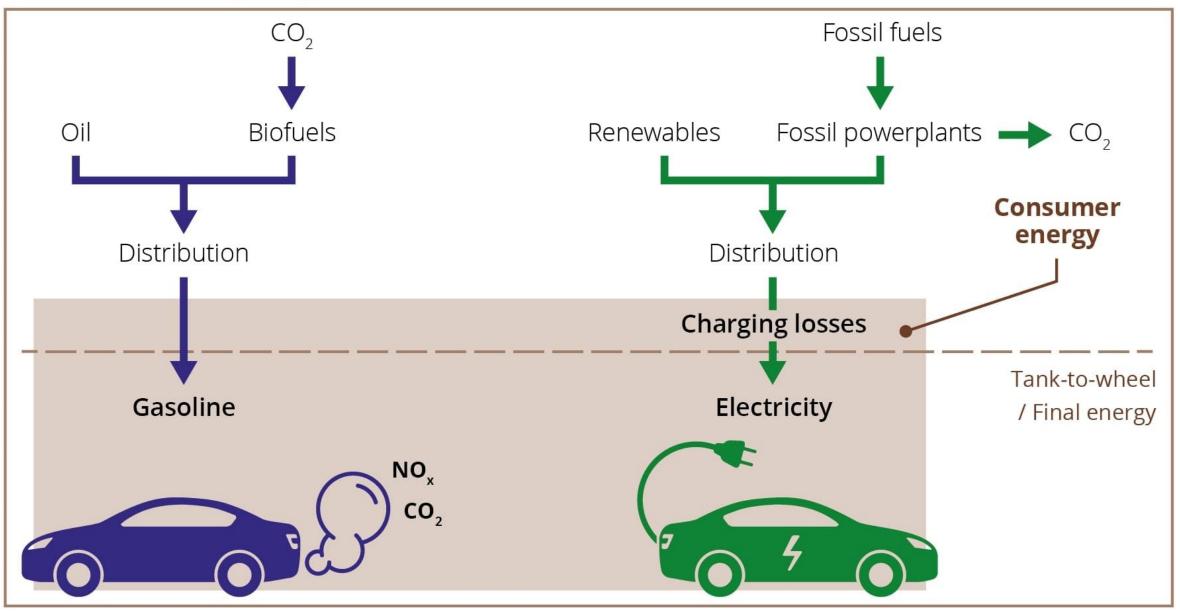
***** Studies that did analyze vehicle energy:

- > Often have limited representation built environment
- Often use biased official data
- Do not classify vehicles by weight



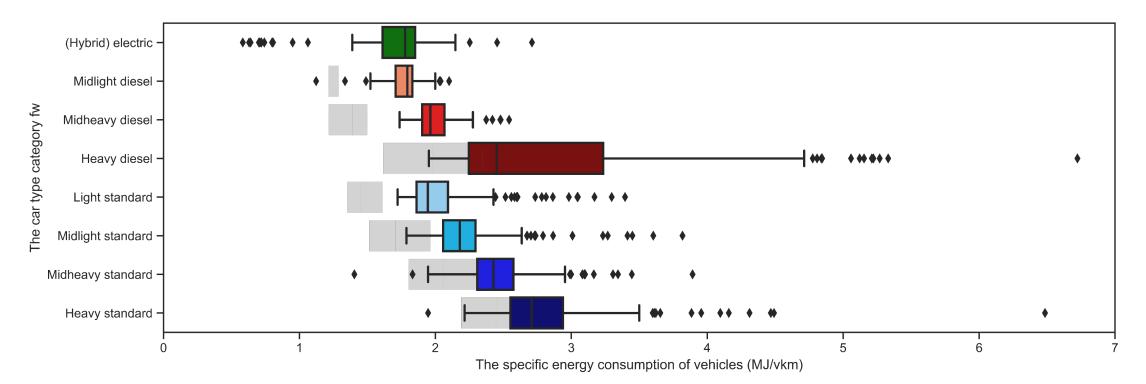

The data

- MPN travel and sociodemographic data
- ***** MPN, CBS, and VDC built environment data
 - In 1km buffer around Postcode-6 (1234AB)


Travelcard and TNO energy data

Official NEDC-data

Well-to-wheel / Primary energy

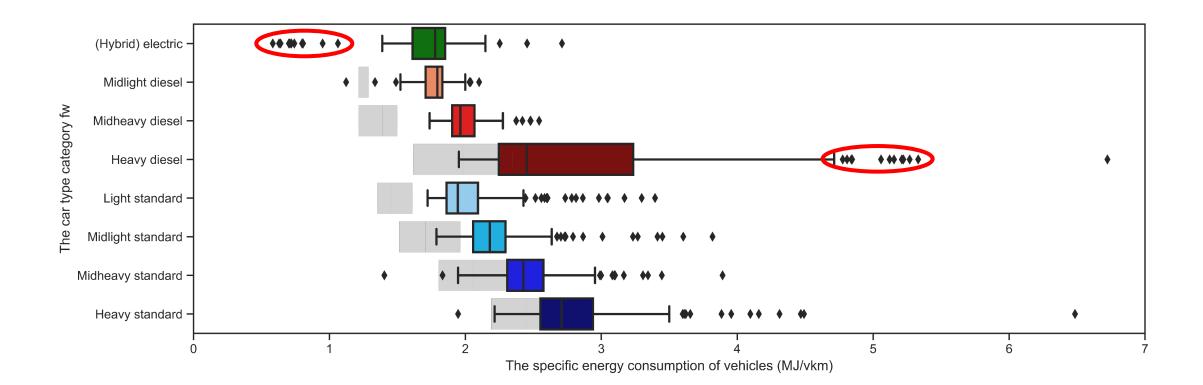


Car energy use

* Boxplots show specific energy use per fuel and weight based car type category fw

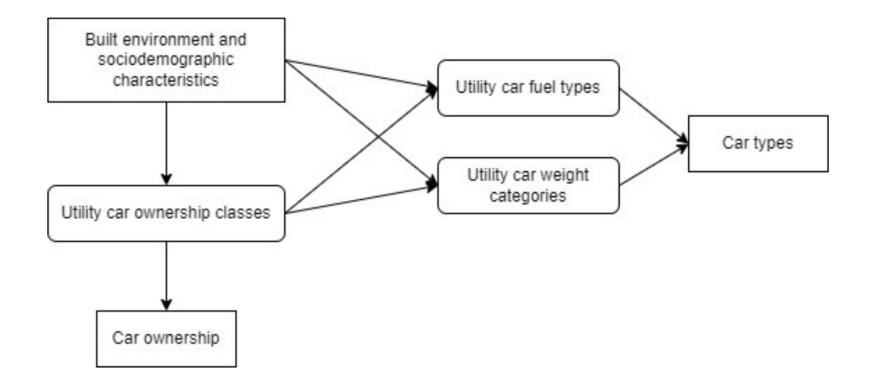
- * Box shows three quantiles (middle line median) and whiskers/diamonds show outliers
- Three quantiles according to official data in Grey

* Multilinear model of real-world vehicle energy (MJ/vkm) depending on variables


Multilinear model?

Outliers

- Half of the vehicles use 2-2.4 MJ/vkm
- Model cannot predict which households much more or less efficient vehicles


* Differing dependence fuel type, weight, and building year on variables

Rich people buying both efficient Teslas and gas-guzzling SUVs

A different approach

Multilevel discrete choice model with explicit consideration of fuel- and weight-based preferences

Results

Let me break it down for you

Latent class model of car ownership

Onecar class utility	Coef β_c	Std err	t-score	P-value	Multicar class utility	Coef β_c	Std err	t-score	P-value
Aspecific Constant	2.004	0.060	33.2	0.000	Aspecific Constant	0.763	0.076	10.1	0.000
HH_under18	0.435	0.066	6.6	0.000	HH_under18	0.533	0.071	7.5	0.000
HH_18to39	0.571	0.072	8.0	0.000	HH_18to39	1.571	0.084	18.8	0.000
HH_40to59	0.598	0.072	8.3	0.000	HH_40to59	1.579	0.084	18.8	0.000
HH_60plus	1.160	0.078	15.0	0.000	HH_60plus	2.032	0.107	19.1	0.000
inc<20k	-0.292	0.036	-8.2	0.000	inc<20k	-0.384	0.082	-4.7	0.000
inc40to60k	0.196	0.045	4.3	0.000	inc40to60k	0.304	0.061	5.0	0.000
inc60to120k	0.313	0.062	5.0	0.000	inc60to120k	0.613	0.070	8.7	0.000
inc≥120k	0.155	0.078	2.0	0.047	inc≥120k	0.252	0.080	3.1	0.002
					Males	0.164	0.057	2.9	0.004
Workers	0.375	0.050	7.5	0.000	Workers	1.052	0.076	13.8	0.000
Density_PC5	-0.307	0.041	-7.4	0.000	Density_PC5	-0.705	0.075	-9.4	0.000
log_km_station	0.165	0.049	3.4	0.001	log_km_station	0.272	0.063	4.3	0.000
log_km_bigstation	0.125	0.050	2.5	0.012	log_km_bigstation	0.177	0.069	2.6	0.010
km_hugecenter	0.162	0.043	3.8	0.000	km_hugecenter	0.142	0.058	2.4	0.015
km_bus	0.246	0.085	2.9	0.004	km_bus	0.350	0.090	3.9	0.000
Parkingspot	0.252	0.046	5.5	0.000	Parkingspot	0.398	0.059	6.8	0.000

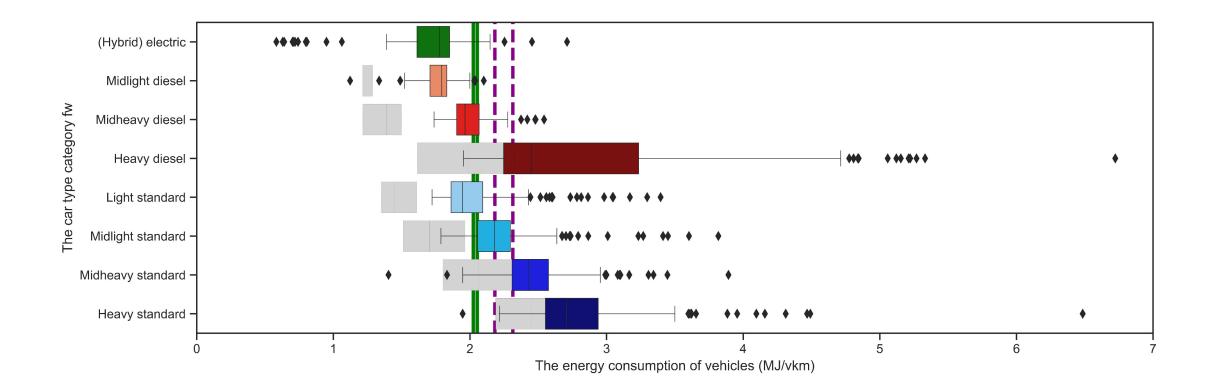
Multinomial model of fuel- and weight-based car types

Aspecific Constants	ASC_t	Std err	t-score	P-value	Standard fuel type utility	Coef β_f	Std err	t-score	P-value
Standard_light	0.344	0.166	2.1	0.039	2car Constant (β_{2car})	-0.174	0.267	-0.7	0.514
Standard_midlight	1.116	0.135	8.3	0.000	HH_18to39	0.108	0.067	1.6	0.105
Standard_heavy	-1.961	0.302	-6.5	0.000	inc<20k	0.221	0.077	2.9	0.004
Diesel_midlight	-1.230	0.168	-7.3	0.000	FracAdultHighedu	-0.071	0.049	-1.5	0.147
Diesel_midheavy	-0.951	0.170	-5.6	0.000	FracAdultMales	-0.166	0.057	-2.9	0.004
Diesel_heavy	-1.428	0.227	-6.3	0.000	km_largecenter	0.149	0.053	2.8	0.005
HEV	-1.390	0.227	-6.1	0.000	km_hugecenter	-0.228	0.073	-3.1	0.002
Diesel fuel type utility	Coef β_f	Std err	t-score	P-value	HEV fuel type utility	Coef β_f	Std err	t-score	P-value
2car Constant (β_{2car})	-2.656	0.444	-6.0	0.000	2car Constant (β_{2car})	-0.328	0.383	-0.9	0.391
HH_18to39	0.699	0.111	6.3	0.000	HH_60plus	-0.216	0.116	-1.9	0.064
HH_40to59	0.463	0.097	4.8	0.000	inc≥120k	0.067	0.046	1.5	0.146
Workers	0.396	0.099	4.0	0.000	Higheducated	0.229	0.097	2.4	0.018
km_largecenter	0.224	0.074	3.0	0.003	Parkingspot	0.234	0.096	2.4	0.015
Landuse	-0.121	0.068	-1.8	0.076					
Parkingspot	0.155	0.081	1.9	0.055					
Light weight utility	Coef β_w	Std err	t-score	P-value	Midlight weight utility	Coef β_w	Std err	t-score	P-value
2car Constant (β_{2car})	-0.609	0.324	-1.9	0.060	2car Constant (β_{2car})	-1.552	0.258	-6.0	0.000
HH_under18	-0.372	0.064	-5.8	0.000	HH_under18	-0.220	0.052	-4.3	0.000
HH_40to59	-0.169	0.066	-2.5	0.011	HH_60plus	-0.249	0.073	-3.4	0.001
HH_60plus	-0.661	0.085	-7.8	0.000	inc≥120k	-0.092	0.045	-2.1	0.040
inc40to60k	-0.116	0.058	-2.0	0.044	Workers	0.236	0.068	3.5	0.001
inc60to120k	-0.149	0.064	-2.3	0.020	km_hugecenter	0.123	0.076	1.6	0.109
inc≥120k	-0.198	0.078	-2.5	0.011					
Males	-0.355	0.065	-5.5	0.000					
km_hugecenter	0.201	0.088	2.3	0.022					
NDVI	-0.125	0.061	-2.1	0.039					
Parkingspot	-0.096	0.058	-1.7	0.097					
Million and a life of the	Coef β_w	Std err	t-score	P-value	Heavy weight utility	Coef β_w	Std err	t-score	P-value
windneavy weight utility									0.000
Midheavy weight utility 2car Constant (β_{2car})	-1.864	0.567	-3.3	0.001	2car Constant (β_{2car})	1.194	0.280	4.3	0.000
2car Constant (β_{2car})		0.567 0.112	-3.3 1.7	0.001 0.098	2car Constant (β _{2car}) HH_under18	1.194 0.141	0.280 0.057	4.3 2.5	$0.000 \\ 0.014$
2car Constant (β_{2car}) HH_40to59	-1.864								
	-1.864 0.185	0.112	1.7	0.098	HH_under18	0.141	0.057	2.5	0.014
2car Constant (<i>β</i> _{2car}) HH_40to59 inc60to120k Workers	-1.864 0.185 0.356	0.112 0.083	1.7 4.3	0.098 0.000	HH_under18 HH_18to39	0.141 -0.309	0.057 0.085	2.5 -3.6	$0.014 \\ 0.000$
2car Constant (β_{2car}) HH_40to59 inc60to120k	-1.864 0.185 0.356 0.267	0.112 0.083 0.146	1.7 4.3 1.8	0.098 0.000 0.067	HH_under18 HH_18to39 HH_60plus	0.141 -0.309 0.190	0.057 0.085 0.090	2.5 -3.6 2.1	0.014 0.000 0.035

Onecar class utility	Coef β_c	Std err	t-score	P-value	Multicar class utility	Coef β_c	Std err	t-score	P-value
Aspecific Constant	2.004	0.060	33.2	0.000	Aspecific Constant	0.763	0.076	10.1	0.000
HH_under18	0.435	0.066	6.6	0.000	HH_under18	0.533	0.071	7.5	0.000
HH_18to39	0.571	0.072	8.0	0.000	HH_18to39	1.571	0.084	18.8	0.000
HH_40to59	0.598	0.072	8.3	0.000	HH_40to59	1.579	0.084	18.8	0.000
HH_60plus	1.160	0.078	15.0	0.000	HH_60plus	2.032	0.107	19.1	0.000
inc<20k	-0.292	0.036	-8.2	0.000	inc<20k	-0.384	0.082	-4.7	0.000
inc40to60k	0.196	0.045	4.3	0.000	inc40to60k	0.304	0.061	5.0	0.000
inc60to120k	0.313	0.062	5.0	0.000	inc60to120k	0.613	0.070	8.7	0.000
inc≥120k	0.155	0.078	2.0	0.047	inc≥120k	0.252	0.080	3.1	0.002
					Males	0.164	0.057	2.9	0.004
Workers	0.375	0.050	7.5	0.000	Workers	1.052	0.076	13.8	0.000
Density_PC5	-0.307	0.041	-7.4	0.000	Density_PC5	-0.705	0.075	-9.4	0.000
log_km_station	0.165	0.049	3.4	0.001	log_km_station	0.272	0.063	4.3	0.000
log_km_bigstation	0.125	0.050	2.5	0.012	log_km_bigstation	0.177	0.069	2.6	0.010
km_hugecenter	0.162	0.043	3.8	0.000	km_hugecenter	0.142	0.058	2.4	0.015
km_bus	0.246	0.085	2.9	0.004	km_bus	0.350	0.090	3.9	0.000
Parkingspot	0.252	0.046	5.5	0.000	Parkingspot	0.398	0.059	6.8	0.000

Aspecific Constants	ASC_t	Std err	t-score	P-value	Standard fuel type utility	Coef β_f	Std err	t-score	P-value
Standard_light	0.344	0.166	2.1	0.039	2car Constant (β_{2car})	-0.174	0.267	-0.7	0.514
Standard_midlight	1.116	0.135	8.3	0.000	HH_18to39	0.108	0.067	1.6	0.105
Standard_heavy	-1.961	0.302	-6.5	0.000	inc<20k	0.221	0.077	2.9	0.004
Diesel_midlight	-1.230	0.168	-7.3	0.000	FracAdultHighedu	-0.071	0.049	-1.5	0.147
Diesel_midheavy	-0.951	0.170	-5.6	0.000	FracAdultMales	-0.166	0.057	-2.9	0.004
Diesel_heavy	-1.428	0.227	-6.3	0.000	km_largecenter	0.149	0.053	2.8	0.005
HEV	-1.390	0.227	-6.1	0.000	km_hugecenter	-0.228	0.073	-3.1	0.002
Diesel fuel type utility	Coef β_f	Std err	t-score	P-value	HEV fuel type utility	Coef β_f	Std err	t-score	P-value
Diesel fuel type utility 2car Constant (β_{2car})	Coef β _f -2.656	Std err 0.444	t-score -6.0	P-value 0.000	HEV fuel type utility 2car Constant (β_{2car})	Coef <i>β_f</i> -0.328	Std err 0.383	t-score -0.9	P-value 0.391
	J					J			
2car Constant (β_{2car})	-2.656	0.444	-6.0	0.000	2 car Constant (β_{2car})	-0.328	0.383	-0.9	0.391
2car Constant (β_{2car}) HH_18to39	-2.656 0.699	0.444 0.111	-6.0 6.3	0.000 0.000	2car Constant (β_{2car}) HH_60plus	-0.328 -0.216	0.383 0.116	-0.9 -1.9	0.391 0.064
 2car Constant (β_{2car}) HH_18to39 HH_40to59 	-2.656 0.699 0.463	0.444 0.111 0.097	-6.0 6.3 4.8	$0.000 \\ 0.000 \\ 0.000$	2car Constant ($β_{2car}$) HH_60plus inc≥120k	-0.328 -0.216 0.067	0.383 0.116 0.046	-0.9 -1.9 1.5	0.391 0.064 0.146
Car Constant (β _{2car}) HH_18to39 HH_40to59 Workers	-2.656 0.699 0.463 0.396	0.444 0.111 0.097 0.099	-6.0 6.3 4.8 4.0	0.000 0.000 0.000 0.000	2car Constant (β_{2car}) HH_60plus inc≥120k Higheducated	-0.328 -0.216 0.067 0.229	0.383 0.116 0.046 0.097	-0.9 -1.9 1.5 2.4	0.391 0.064 0.146 0.018
Car Constant (β _{2car}) HH_18to39 HH_40to59 Workers km_largecenter	-2.656 0.699 0.463 0.396 0.224	0.444 0.111 0.097 0.099 0.074	-6.0 6.3 4.8 4.0 3.0	$\begin{array}{c} 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.003 \end{array}$	2car Constant (β_{2car}) HH_60plus inc≥120k Higheducated	-0.328 -0.216 0.067 0.229	0.383 0.116 0.046 0.097	-0.9 -1.9 1.5 2.4	0.391 0.064 0.146 0.018

L	ight weight utility	Coef β_w	Std err	t-score	P-value	Midlight weight utility	Coef β_w	Std err	t-score	P-value
20	car Constant (β_{2car})	-0.609	0.324	-1.9	0.060 💻	2car Constant (β_{2car})	-1.552	0.258	-6.0	0.000
— H	H_under18	-0.372	0.064	-5.8	0.000	HH_under18	-0.220	0.052	-4.3	0.000
H	IH_40to59	-0.169	0.066	-2.5	0.011	HH_60plus	-0.249	0.073	-3.4	0.001
— H	IH_60plus	-0.661	0.085	-7.8	0.000	inc≥120k	-0.092	0.045	-2.1	0.040
in	nc40to60k	-0.116	0.058	-2.0	0.044	Workers	0.236	0.068	3.5	0.001
🛑 in	nc60to120k	-0.149	0.064	-2.3	0.020	km_hugecenter	0.123	0.076	1.6	0.109
🛑 in	nc≥120k	-0.198	0.078	-2.5	0.011					
	fales	-0.355	0.065	-5.5	0.000					
k	m_hugecenter	0.201	0.088	2.3	0.022					
→ N	DVI	-0.125	0.061	-2.1	0.039					
Pa	arkingspot	-0.096	0.058	-1.7	0.097					
N	fidheavy weight utility	Coef β_w	Std err	t-score	P-value	Heavy weight utility	Coef β_w	Std err	t-score	P-value
→ 20	car Constant (β_{2car})	-1.864	0.567	-3.3	0.001 📫	2car Constant (β_{2car})	1.194	0.280	4.3	0.000
	[H_40to59	0.185	0.112	1.7	0.098 💻	HH_under18	0.141	0.057	2.5	0.014
in	nc60to120k	0.356	0.083	4.3	0.000	HH_18to39	-0.309	0.085	-3.6	0.000
W	Vorkers	0.267	0.146	1.8	0.067 💻	HH_60plus	0.190	0.090	2.1	0.035
Ν	DVI	0.297	0.110	2.7	0.007	Higheducated	0.113	0.070	1.6	0.103
						Males	0.331	0.098	3.4	0.001
						Parkingspot	0.212	0.075	2.8	0.005


Predictions

***** Simple predictions to help understand results:

- Vehicle energy use of student and high-income family
- > In Amsterdam city center and representative village of Heesch

* The student (green lines) owns an efficient car in both Amsterdam and Heesch

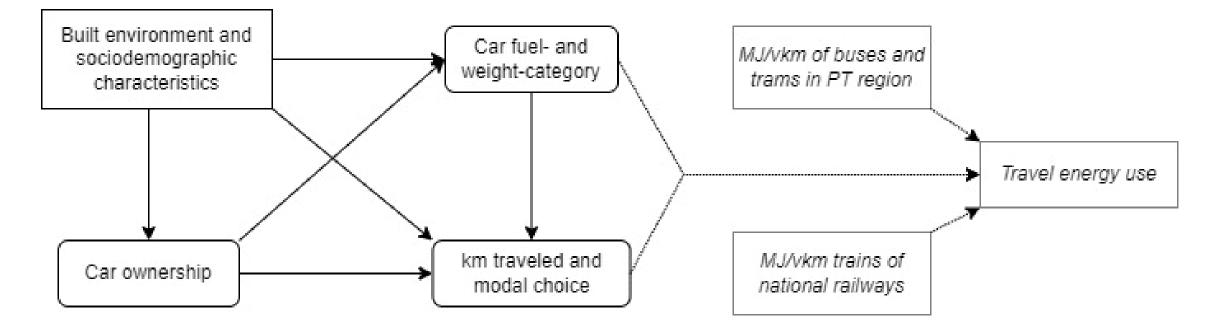
A high-income family (purple lines) owns a less efficient car, especially when living in Heesch

Conclusions

Multicar households live in non-urban environments and prefer inefficient heavy vehicles
 Small, lower-income households with few male or older members own light vehicles
 Urban households own light vehicles

* Households with private parking own both heavy and electric vehicles

Studies that omit vehicle efficiency therefore somewhat underestimate influence urban planning interventions on future energy/emissions


***** But most effective energy-saving strategy seems to keep improving testing procedures

What now?

* Adding kilometers traveled and modal preferences

- Km/mode = fraction(mode)*km_total
- Modeled vehicle kilometers by car can be combined with MJ/vkm of fuel- and weight-based car type to predict energy use
- However, the model is highly sensitive to starting values because of latent class structure and nonnormal distribution of kilometers traveled

Research questions

- 1. How do the residential environment and sociodemographic characteristics influence the number of cars owned by households?
- 2. How do the residential environment, sociodemographic characteristics, and number of cars owned influence the fuel- and weight-based types (and thus energy efficiency) of the cars owned?
- 3. How do the residential environment, sociodemographic characteristics, number of cars owned, and types of cars owned influence distances traveled and modal choice?
- 4. What is the combined effect of the residential (built) environment on travel energy as determined by the types of cars owned, distances traveled, and modal choice?

Want to talk further?

Feel free to send a mail or connect on LinkedIN!

Chris Djie ten Dam Utrecht University c.d.tendam@uu.nl

